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Requirements

• Initial requirements come from the science community
– What do we need to measure?

• Project requirements quickly become a trade between scientific
desire and engineering capability   (and budget!)

Data
Volume

Data
Rate

Time
Available

• Communications systems architecture and
design must balance three critical quantities:

Data Volume, Data Rate, and Time

• A fourth quantity impacts the trade      space for
the other three:

– Where (at what levels) should the measurements be made?



Definition of the Problem

Layers of
Planetary

Atmosphere

• A probe at some level within a
planetary atmosphere ...

• ... must send a given volume of
data in a given time ...

• ... through the intervening
atmosphere, and possibly other
non-vacuum media ...

• ... over some distance r ...

• ... to a receiving station of given
performance.

• It is possible (overwhelmingly
likely!) that the receiving station
might not be directly overhead of
the probe



Definition of the Problem

Pt:  transmitter power  Gt:  transmitting antenna gain
Dr:  receiving aperture diameter r:  distance between antennas
ξ :  loss terms (e.g., signal absorption or scattering, antenna losses)

Ro:  constant (approximately) of proportionality depending on the receiving system’s
performance, coding schemes, noise, etc.
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• Approximation for a system’s maximum data rate:
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• or, equivalently:



Definition of the Problem
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General Telemetry Systems & Loss Terms



Radio Hardware
Characteristics and Performance



Radio Hardware
Characteristics & Performance

Antenna Patterns & Gain

“Isotropic Radiator” (a fiction) “Low Gain” antenna

“High Gain” antenna“Medium Gain” antenna
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Gain G is the ratio
of an antenna’s on-axis
emitted signal intensity
to that of an isotropic
radiator driven by the
same total power.



Component Size, Mass, & Power

• Generally, components increase in size and mass as frequency decreases
(wavelength increases; λ = c/f)

– Typical components include antennas, connectors, directional couplers, etc.

• Usually an entry probe’s largest single power consumer is the telecom system’s
RF power amplifier

– Currently there are two main types of power amplifiers:

 Traveling Wave Tube Amplifiers, or TWTAs
– Usually heavier than an SSPA, but DC-to-RF efficiency ~50%

 Solid State Power Amplifiers, or SSPAs
– Usually lighter than a TWTA, but DC-to-RF efficiency 10-20%

– Trade usually favors SSPA for low power, TWTA for high power

Radio Hardware
Characteristics & Performance



Power Supplies

• Figures of Merit for power supplies
– Specific energy:  total energy available per mass of power system

– Specific power:  maximum usable power drain per system mass

• Most entry probe missions have descent-phase durations from one to a few
hours

– Primary batteries are excellent power sources for such missions

 High specific energy and specific power

 Can handle low-power missions of a few days or weeks duration

• Longer missions need more complex, and less efficient, systems
– Solar or RPS primary source, sometimes with secondary batteries

– Aerobots, long-duration balloons or landers

Radio Hardware
Characteristics & Performance



Radio Propagation Effects



Radio Propagation Effects

• In the “far field”, radio waves propagate radially away from an
antenna

– RF power spreads over an area proportional to r2

– Intensity of the radio signal goes as 1/r2

 Reason for the r2 in the denominator of the RD
equation

 That’s life (physics!);  no way around it!

Attenuation by Spherical Divergence



Radio Propagation Effects

• Scattering changes the propagation direction of an EM wave

• Redirection of RF energy away from the antenna beam

• Due mostly to inhomogeneities in atmospheres
– Gases:  Temperature variations, turbulence
– Liquids:  Cloud droplets and local concentrations
– Solids:  Ice cloud particles and local concentrations

• Can also occur in planetary and interplanetary plasmas

Attenuation by Scattering



Radio Propagation Effects

• Characterized by the “absorption coefficient” α
– Units of Optical Depths or dB (some logarithmic unit) per unit length
– Many influences: concentration, T, P’s of other gases, radio frequency

• Many constituents of giant planet atmos’s can absorb RF energy
– Gases:  ammonia, water, hydrogen sulfide, phosphine  (others?)
– Liquids:  water, water-ammonia solutions
– Solids:  water, ammonia
– Collisional plasmas

• Absorption Spectra:  absorption coefficient vs (radio) frequency
– Liquids:  usually have non-resonant “Debye” spectra

 Absorption coefficient of a given sample is proportional to f2

– Gases:  very complex behavior by some gases, especially ammonia
 Discrete transitions within coupled rotational-vibrational states (and other transitions)

generate many absorption lines
 Pressure broadening increases line widths so they overlap, creating a continuum spectrum
 Extreme pressure broadening produces a quasi-Debye spectrum, and can broaden powerful

IR absorption lines into the RF portion of the spectrum

Attenuation by Absorption



Radio Propagation Effects

Attenuation by Absorption in a Gas:  Ammonia
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Radio Propagation Effects:  Other

• A magnetoplasma (such as an ionosphere) can rotate the polarization plane of a linearly
polarized signal

– Degree of effect depends on plasma parameters that can vary with time
– Receiving stations may not be able to accurately predict the polarization direction

• Circularly polarized signals are unaffected
– Reason interplanetary communications systems use circular polarization

Polarization Effects

• Bending of a refracted ray increases as the angle of
incidence increases

– “Bottom” of an antenna beam bends more than the “top”
– Beam becomes elongated, spreads the energy over a

larger area:  attenuation

Refractive Beam Spreading

BWr

BWi BWi < BWr



Radio Propagation Effects

• The receiving system itself
– Receiver internal noise (characterized by receiver noise temperature)
– blackbody radiation from antenna parts

• Earth’s atmosphere
– Gases with non-zero opacity, at non-zero temperatures, radiate

 Earth has absorbing gases, especially water
– Scattering of noise into receiving antenna beam

• Radiation from the target planet
– Atmospheric thermal emission
– Synchrotron radiation, especially at Jupiter, few MHz to a few GHz

• Background noise sources:  astrophysical objects, etc.
• Local (to the receiving system) interference

– Spacecraft EMI
– On Earth, industrial & military operations, aircraft, ground vehicles, etc

Noise Sources



Geometry



Geometry

• The giant planets are in distant, fairly circular, nearly coplanar orbits
– No large advantage to any particular parts of their orbits

• Opposition timing yields advantageous probe-to-Earth geometry
– Distance is a minimum
– Signal propagation is radial to sun

r     ~ a - 1 AUmin

Earth
Orbit

Sun

Solar System Architecture



Solar System Scales
• Fundamental unit of convenience is the Astronomical Unit or AU

– Average distance from the Sun’s center to Earth’s center

– Currently defined as 149,597,870.66 km

The solar system is a BIG place

• Regular planet nearest the Sun is Mercury
– Average distance from the Sun is 0.3871 AU (0.3075 - 0.4667)

• Regular planet farthest from the Sun is Neptune
– Average distance from the Sun is 30.0577 AU (29.8372 - 30.2782)

• Large distances cause problems for solar system exploration
– Travel from Earth to Neptune at 965 KPH (600 MPH) takes ~515 years!

– Telemetry data rates using “common” techniques are inadequate

 Due to that r2 in the denominator of the RD equation

Geometry



Planetary System Architecture
• Planets have non-zero obliquity

– Viewing aspect from Earth (sub-Earth latitude) changes with time
– Jupiter ~3 deg.   Saturn & Neptune ~ 30 deg.  Uranus almost 100 deg.
– Delivery of probes to desired locations can be difficult at times

• Giant planets have moons
– Must avoid impacts with them
– Must ensure they do not occult the signal path
– But ... they can be used for maneuvering within a planetary system

• Giant planets have rings
– Some are essentially opaque at microwave frequencies

 Saturn B ring, Uranus ε ring
 Avoid signal path occultations (may eliminate much real estate!)

• Jupiter has intense radiation belts
– Probes to many locations must pass through them
– Some advantageous trajectories pass through the most intense parts

 Synchronous rotation of orbital and flyby trajectories

Geometry



Planetary Dynamics & Structure
• Giant planets rotate quickly

– Probes don’t “sit still” after entry;  probe zenith changes quickly

• Giant planets have weather:  winds, turbulence, possibly rain
– Can scatter and/or absorb energy out of radio beam
– Turbulence can cause large, rapid antenna pointing excursions
– High-speed zonal winds

• Atmospheric scale heights can be large
– Result of light gases and relatively low gravity
– Increases absorption losses from a given pressure level
– Ex:  Saturn

Geometry
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• Giant planet sizes allow a Euclidean
approximation

– Atmospheric thickness of even several
hundred km appears locally “flat”

– Absorption in logarithmic units is
proportional to path length!
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Orbital Dynamics Constraints
• Even the Project Manager and PI can’t defy physical laws

– Orbital mechanics is well understood at the level needed for probes
– Some physical laws can help get around others, but it’s often expensive!

• Example:  Entry probe at one of Jupiter or Saturn’s poles
– Relay spacecraft cannot just “sit” above the pole -- it must be moving
– If the RSC is not to crash into the planet, its motion moves it away from the pole

• Example:  Deep entry probe at Jupiter’s sub-Earth point for DTE

Geometry

– Attempt to do direct-to-Earth
comm generates a requirement
for >7 km/s delta-V
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Conclusions

• Architecting entry probe data relay systems is a very complex,
multidisciplinary task

– Involves not just radio engineering, but also orbital mechanics, planetary
and atmospheric physics, microwave spectroscopy...

• For the past 4 decades, radio system design teams have met the
challenges of the design tasks

– Analyzing performance of reasonable alternatives from their “toolkit”
– Choosing the best architecture and system for the job

• DTE is great -- for Venus and Mars data return, and for giant
planet probe Doppler measurements

• DTE underperforms for giant planet probe data return

• DTE is an old tool from the mission architect’s and radio
engineer’s toolkit;  they will use it when it is appropriate



Questions?


